

№	Задание	Ответы	Баллы
1	Функциональную группу – СОН содержит: 1) этиловый спирт, 2) метан, 3) уксусный альдегид 4) ацетилен		15
2	Бутан \rightarrow этан \rightarrow хлорэтан \rightarrow бутан \rightarrow изобутан		15
3	Чему равна молярная масса газа, плотность которого $0.2~{\rm kr/m^3}$, температура 250 К, давление 19 кПа?		20
4	Рассчитайте среднюю относительную атомную массу хлора, зная что в природном хлоре содержится 75,77 % (по массе) изотопа ³⁵ Cl и 24,23 % изотопа ³⁷ Cl.		20
5	При сгорании органического вещества А массой 3,4 г получено 4,48 л (н. у.) углекислого газа и 1,8 г воды. Известно, что вещество А вступает в реакцию с раствором гидроксида лития при нагревании, в результате чего образуется предельный одноатомный спирт и соль, кислотный остаток которой содержит семь атомов углерода. На основании данных условия задачи: 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу вещества А; 2) составьте возможную структурную формулу вещества А, которая однозначно отражает порядок связи атомов в его молекуле; 3) напишите уравнение реакции вещества А с раствором гидроксида лития при нагревании (используйте структурные формулы органических веществ).		30

No	Задание	Ответы	Баллы
1	Для метанола верны следующие утверждения: 1) в состав входит один атом углерода, 2) атомы углерода соединены двойной связью, 3) является жидкостью (н.у.), 4) вступает в реакцию со щелочными металлами, 5) вступает в реакцию с гидроксидом натрия		15
2	При сгорании органического вещества, не содержащего кислород, выделилось 4.48 л углекислого газа, 3.6 г воды и 7.3 г хлороводорода. Определить формулу сгоревшего вещества и напишите уравнение реакции		15
3	Температура нагревателя идеальной машины Карно 700 К, а температура холодильника 420 К. Каков КПД идеальной машины?		20
4	При обработке 150 г древесной золы избытком соляной кислоты, получили 22,4 л (н.у.) углекислого газа. Какова массовая доля (%) карбоната калия в исходном образце золы?		20
5	При стандартных условиях выделяемая теплота полного бромирования белого фосфора равна 229,1 кДж/моль, а теплота бромирования красного фосфора равна 212,3 кДж/моль. Рассчитайте теплоту превращения красного фосфора в белый фосфор при стандартных условиях. На основании полученного результата сделать выводы, какая аллотропная модификация фосфора более устойчива.		30

N₂	Задание	Ответы	Баллы
1	Ацетат натрия \rightarrow метан \rightarrow хлорметан \rightarrow этан \rightarrow этен		15
2	При сгорании пентена в 56 л кислорода (н.у.) по уравнению $2C_5H_{10(r)} + 15O_{2(r)} = 10CO_{2(r)} + 10H_2O_{(r)}$ образовалась вода. Определите количество воды.		15
3	Согласно термохимическому уравнению реакции $CH_{4(\Gamma)}+2O_{2(\Gamma)}=CO_{2(\Gamma)}+2H_2O_{(\Gamma)}+802$ кДж. Определите количество теплоты, выделившейся при сжигании 48 г метана.		20
4	Раствор, содержащий 13 г азотнокислого серебра смешан с 41,7 мл 26 %-ного раствора хлористого натрия с плотностью 1,2 г/см ³ . Какие вещества и в каком количестве остались в растворе после того как осадок был отфильтрован?		20
5	Охлаждается 20 т железная отливка. Внутри остался азот. Растворимость азота в жидком железе составляет 0,043 % масс. Будем считать, что азот собрался внутри отливки в сферической поре диаметром 20 см. Температура 300 К. Определите давление азота внутри поры, а так же объем, который займет азот, выйдя в атмосферу.		30

№	Задание	Ответы	Баллы
1	Согласно термохимическому уравнению реакции окисления глюкозы $C_6 H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + 2800$ кДж выделилось 56 кДж теплоты. Найдите массу прореагировавшей глюкозы		15
2	Метан \rightarrow ацетилен \rightarrow этан \rightarrow пропан \rightarrow 1-хлорпропан		15
3	Найдите объём метана (н.у.), полученного из 18 г карбида юминия, содержащего 20 % примесей.		20
4	При сгорании органического вещества, не содержащего кислород, выделилось 8.96 л углекислого газа, 7.2 г воды и 14.6 г хлороводорода. Определить формулу сгоревшего вещества и напишите уравнение реакции		20
5	а) В процессе <i>acb</i> система получает 800 Дж тепла и совершает 300 Дж работы. Рассчитайте изменение внутренней энергии. б) На пути <i>adb</i> работа составляет 120 Дж. Рассчитайте количество тепла и изменение внутренней энергии.		30

№	Задание	Ответы	Баллы
1	Углерод \rightarrow метан \rightarrow бромметан \rightarrow этан \rightarrow хлорэтан \rightarrow бутан		15
2	Определите формулу этана, если известен его молекулярный вес, равный 30, и процентный состав: C - 80 %; H - 20 %.		15
3	Смешали 250 г 10 %-ного и 750 г 15 %-ного раствора глюкозы. Вычислите массовую долю глюкозы в полученном растворе		20
4	При гидролизе карбида алюминия выделилось 6,72 л газа (н.у.). Рассчитайте массу карбида алюминия, подвергшегося гидролизу.		20
5	10 г. кислорода находятся под давлением 0,303 МПа при температуре 10 °C. После нагревания при постоянном давлении кислород занял объём 10 л. Найти начальный объём и конечную температуру газа.		30

№	Задание	Ответы	Баллы
1	1 -хлорпропан \to гексан \to пропан \to 2-хлорпропан \to 2,3-диметилбутан		15
2	По термохимическому уравнению: $2 \text{KNO}_3 \ (\text{тв.}) = \text{KNO}_2 \ (\text{тв.}) + \text{O}_2 \ (\text{г.}) - 255 \ \text{кДж}$		15
	вычислите количество теплоты, которая поглотится при получении 6,72 л кислорода (н.у.).		
3	Какой объём (н.у.) водорода образуется при полном разложении 220 л (н.у.) метана до простых веществ?		20
4	Установите молекулярную формулу и строение широко распространенной природной одноосновной карбоновой кислоты X по результатам анализа: а) для полной нейтрализации карбоновой кислоты массой 1,69 г потребовался раствор NaOH объемом 48,38 мл с молярной концентрацией 0,124 моль/л; б) такая навеска обеспечивает бромную воду массой 48,0 г с массовой долей брома 2 %.		20
5	Газ занимал объём 12,32 л. Его охладили при постоянном давлении на 45°C, и его объём стал равен 10,52 л. Какова была первоначальная температура газа?		30

№	Задание	Ответы	Баллы
1	В сосуде вместимостью $V=0,3$ л при температуре $T=290$ К находится некоторый газ. На сколько понизится давление р газа в сосуде, если из него из-за утечки выйдет $N=10^{19}$ молекул ?	15	
2	В воде растворили 11,2 г гидроксида калия, объем раствора довели до 257 мл. Определите молярную концентрацию раствора		15
3	При сгорании 8 г кальция выделилось 127 кДж теплоты. Составьте термохимическое уравнение реакции.		20
4	При взаимодействии 0,75 г двухвалентного металла с водой выделилось 420 мл водорода (н.у.). Назавите этот металл.		20
5	20 г. кислорода находятся под давлением 0,6 МПа при температуре 20 °C. После нагревания при постоянном давлении кислород занял объём 10 л. Найти начальный объём и конечную температуру газа.		30

№	Задание	Ответы	Баллы
1	Метан \rightarrow хлорметан \rightarrow этан \rightarrow этилен \rightarrow полиэтилен		15
2	Сколько граммов хлорида калия содержится в 750 мл 10 %-ного раствора плотность которого равна 1,063 г/мл?		15
	По термохимическому уравнению		
3	$C_2H_4(\Gamma.) + 3O_2(\Gamma.) = 2CO_2(\Gamma.) + 2H_2O(\Gamma.) + 1400$ кДж		20
	определите объем этилена (н.у.), который нужно сжечь, чтобы получить 70 кДж теплоты.		
4	За 1 цикл рабочее тело теплового двигателя совершило работу 60 кДж и отдало холодильнику 140 кДж количества теплоты. КПД двигателя равен		20
5	При сжигании уксусной кислоты в кислороде выделилось 235,9 кДж теплоты и осталось 10 л непрореагировавшего кислорода (измерено при давлении 104,1 кПа и температуре 40 °C). Рассчитайте массовые доли компонентов в исходной смеси, если известно, что теплоты образования оксида углерода (IV), паров воды и уксусной кислоты составляют 393,5 кДж/моль, 241,8 кДж/моль и 484,2 кДж/моль соответственно.		30

Отборочный этап

Направление: физико-химическое

Класс:11

№	Вариант 1	Вариант	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7	Вариант 8
1	3	1, 3, 4	CH ₃ COONa+ NaOH \rightarrow Na ₂ CO ₃ + CH ₄ CH ₄ +Cl ₂ \rightarrow CH ₃ Cl+HCl 2CH ₃ Cl+2Na \rightarrow C ₂ H ₆ +2NaCl C ₂ H ₆ \rightarrow (HarpeB)C ₂ H	3,6 г	C+2H ₂ \rightarrow CH ₄ CH ₄ +Br ₂ \rightarrow CH ₃ Br+HBr 2CH ₃ Br+2K \rightarrow C ₂ H ₆ +2KB r C ₂ H ₆ +Cl ₂ \rightarrow C ₂ H ₅ Cl+HCl 2C ₂ H ₅ Cl+ 2 Na \rightarrow C ₄ H ₁₀ +2NaCl	$ 2C_{3}H_{7}Cl \\ +2Na \rightarrow 2NaCl + C_{6}H_{14} \\ C_{6}H_{14} \rightarrow C_{3}H_{8} + C_{3}H_{6} \\ C_{3}H_{8} + Cl_{2} \rightarrow C_{3}H_{7}Cl \\ +HCl \\ 2 \\ C_{3}H_{7}Cl + 2Na \rightarrow C_{6}H_{14} + 2 \\ NaCl $	1,3·10 ⁻³ atm	$CH_4+Cl_2\rightarrow CH_3Cl+HCl$ $2CH_3Cl+2Na\rightarrow C_2H_6+2N$ aCl $C_2H_6\rightarrow C_2H_4+H_2$ $n C_2H_4\rightarrow (C_2H_4)_n$
2	$C_4H_{10} \rightarrow$ (нагрев) $C_2H_6 + C_2H_4$ $C_2H_6 + Cl_2 \rightarrow$ $C_2H_5Cl + HCl$ $2C_2H_5Cl +$ Na $\rightarrow C_4H_{10} +$ NaCl $C_4H_{10} \rightarrow$ (нагрев с AlCl ₃) изобутан	CH₃Cl	30 г	2CH ₄ →(HarpeB) $C_2H_2 + 3H_2$ $C_2H_2 + 2H_2$ → C_2H_6 $C_2H_6+Cl_2$ → $C_2H_5Cl+HCl$ C_2H_5Cl +CH ₃ Cl+2Na→ $C_3H_8+2NaCl$ $C_3H_8+Cl_2$ →C ₃ H ₇ Cl + HCl	C ₂ H ₆	-76,5 кДж	0,78 моль/л	79,73 г
3	21,9 г/моль	40 %	2406 кДж	6,72 л	13,75 %	440 л	1270 кДж	1,12 л
4	35,5 г/моль	92 %	8,53 г NaCl, 6,5 г	CH ₃ Cl	14,4 г	C ₁₇ H ₃₃ COOH	Ca	30 %

			NaNO ₃			олеиновая кислотв		
5	C ₆ H ₅ -COO-CH ₃	-16,8	1799 атм	а)∆U=500 Дж	2,4 л	309,7 К	2,5 л	Кислота 36 %
		кДж/мол	$7,6 \text{ m}^3$	б) ΔU=500 Дж,	1179 K		1155 K	Кислород 64 %
		Ь		Q=620 Дж				